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A model is presented to describe a spherical void shrinkage at the center of a quasi-spherical grain
dominated by lattice self-diffusion. The model is based on the difference in chemical potential between the
spherical void surface and the grain boundary interface. The quantitative calculations for pure iron
predicted that only small, micron-sized spherical voids could be wholly healed within hours at high
temperature. The spherical void shrinkage process can be greatly promoted with an increase in tempera-
ture, which depends strongly on crystal lattices, particularly the initial radius of the spherical void and the
grain size. The time to eliminate a spherical void with an identical radius within grains is close to that for
grain boundaries, while different shrinkage processes were undergone, at fixed temperatures, and related
to spherical void size, void spacing, and the grain size.
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1. Introduction

High-temperature internal crack healing and microstructur-
ally similar processes have been the subject of considerable
interest and study for many years.[1-6] The diffusive healing
processes that occur at elevated temperature can reduce the
deleterious effects of cracks on strength, allowing partial or
complete recovery of strength in such cracked materials as
ceramic and its composites.[1-6] In addition, the morphological
changes during crack healing, sintering, and diffusion bonding
have many similarities.[7-11] Similar transport mechanisms also
may control or affect these three processes. Thus, investiga-
tions into internal crack healing may also contribute to an
improved fundamental understanding of sintering and diffusion
bonding.

Most studies of internal crack healing have revealed several
geometrically distinct stages to the process.[12-16] The initial
stage is characterized by crack tip regression and blunting, i.e.,
surface tension would cause the edges of the crack to recede
toward the center and grow in girth. The second stage of crack
healing is accompanied by the formation of cylindrical pore
channels, which results in a doughnut-shaped rim spanned by
the remainder of the crack. Finally, the cylindrical pore chan-
nels that are formed are subject to Rayleigh instabilities, lead-
ing to the formation of discrete spherical voids both on grain
boundaries and within grains.

In contrast, for metals, the spherical voids can be directly
introduced mainly on grain boundaries (and a few within
grains) by either creep or fatigue at high temperature.[17-20]

However, during the high-temperature creep and fatigue at at-

mospheric environment, gas diffused into the voids tends to
build up an internal pressure inside the voids to balance the
surface tension forces, which tend to close the voids and then
retard the void shrinkage. In the present study, only a gas-free
spherical void was treated.

Alternatively, annealing at high temperature for crack heal-
ing and void shrinkage could cause grain growth and grain
boundary migration as atoms detach from one grain and join
another, which could also isolate many spherical voids initially
on grain boundaries stranded inside the grains.[17,20,21] That is,
the voids separate from the grain boundaries. After being
trapped inside the grains, the spherical voids can only be elimi-
nated by lattice diffusion, which is a much slower process than
grain boundary diffusion.[21] Consequently, the separation
leads to a porous, coarse-grained ceramic. Therefore, it is tra-
ditionally believed that it is difficult to produce a dense, fine-
grained ceramic by totally healing the voids within grains
through lattice diffusion, even when an external hydrostatic
pressure is applied.

The formation of isolated spherical voids is, generally, re-
ferred to as completion of the crack healing for the porous
materials, such as ceramics, because the spherical voids repre-
sent relatively stable void shapes with the smallest surface
areas, when total volumes of initial cracks remain con-
stant.[3,22,23] More importantly, it is believed that the recovery
of strength in ceramics results not from continued shrinkage of
small spherical voids, but rather from continued pinching off of
the remaining cylindrical channel voids.[2,3] Similarly, for dif-
fusion bonding, the whole bonding process was also regarded
as the changes from initial void shapes to circular profiles on
the bonding interface.[10,24,25] However, for metals, the recov-
ery of creep ductility properties has been positively attributed
to the shrinkage of spherical voids on grain boundaries, relative
to the small tendency of voids to shrink within grains.[17]

Therefore, for close-grained materials, or metals, it is expected
that the spherical voids should be eliminated as the final stage
of the crack healing, whether on grain boundaries or within
grains. Until now, to the author’s knowledge, little attention
has been devoted to the spherical void shrinkage within grains.

Jun Sun, State Key Laboratory for Mechanical Behavior of Materials,
School of Materials Science and Engineering, Xi’an Jiaotong Univer-
sity, Xi’an 710049, People’s Republic of China. Contact e-mail:
junsun@xjtu.edu.cn.

JMEPEG (2002) 11:322-331 ©ASM International

322—Volume 11(3) June 2002 Journal of Materials Engineering and Performance



In the last two decades, many efforts have been made to
investigate void shrinkage on the planar bonding interface or
the planar grain boundary interface,[26] under surface or inter-
face self-diffusion, or both. Some void shrinkage models[27-29]

were developed from powder sintering models,[30,31] and oth-
ers[10,32] were derived from void growth models,[33-36] includ-
ing that of spherical voids,[37] where an improper boundary
condition was used[24] under tensile creep, treating void shrink-
age as negative void growth. Note, however, that all of the
models can only be used to describe the process of void shrink-
age on bonding interfaces or grain boundaries, but not that
within grains.

In fact, the spherical void has an intrinsic tendency to shrink
under the action of surface tension forces, regardless of wheth-
er they are on grain boundaries or within grains, although it
was believed that the shrinkage rates of spherical voids within
grains were much lower than those on grain boundaries.[17,20,21]

In other words, the void shrinkage also can be operated within
grains because of the difference in chemical potential between
the spherical void surface and the quasi-spherical grain bound-
ary interface surrounding the shrinking void and following
mass transfer driven by the gradient of the chemical potential.
Moreover, spherical void shrinkage within a grain, if adopted
as a final stage of the whole internal crack healing, might be a
rate-controlling step because it is dominated by a lattice self-
diffusion, which is much slower than that by either surface or
interface diffusions. Along this line, the work reported here
presents a model to describe the void shrinkage in the center of
the quasi-spherical grain dominated by lattice self-diffusion of
atoms. The model is based on the difference in chemical po-
tential between atoms on the spherical void surface and quasi-
spherical grain boundary interface.

2. Background

For a curved surface, an excess chemical potential is usually
expressed by

�� = � − �0 = ��K (Eq 1)

where � and �0 is the chemical potential of a species on a
curved and a planar surface, respectively; ��K is the excess
chemical potential produced by the present of the surface cur-
vatures; � is the surface tension (assumed to be isotropic here);
� is the atomic volume; and K � 1/R1 + 1/R2 is the mean
curvature of the surface at the point of interest (where R1 and
R2 are the principal radii of the curvature).

For diffusion-controlled capillary instability of rod mor-
phologies,[12,38] the excess chemical potential induced by the
surface curvature has always referred to a positive value, re-
gardless of the difference between a convex surface and a
concave surface. Perhaps the absence of the distinction is ac-
ceptable in the investigations into the undulation of the rod
along its longitudinal direction. However, the excess chemical
potential should be identified as positive for a convex surface
and a negative for a concave surface where both surface pro-
files have to be involved, as indirectly suggested in related
research.[10,39-44]

In general, direct cylinderization always occurs for a plate

and a hole not having internal boundaries, during which the
plate’s transverse cross section evolves into a circle even for
rectangular- and “I”-shaped plates.[45,46] Similarly, an equilib-
rium circular cross-sectional shape also would be approached
as a result of diffusion along the curved surface of a plate and
a hole with an elliptical cross-sectional shape, as shown in Fig.
1. Clearly, the variation of the excess chemical potential on the
curved surface with radius R for a plate is different from that
for a hole. That is, the excess chemical potential, �� � �R −
�0, becomes either more positive (higher) or negative (lower)
with decreasing radius R for both plate and hole surfaces.
Therefore, the atoms would diffuse along the surface from B to
A for the plate and from D to C for the hole because �R(B) >
�R(A) for a convex surface and �R(D) > �R(C) for a concave
surface, respectively. Consequently, the transverse cross-
sectional shape of both a plate and a hole approaches the equi-
librium circular cross-sectional shape to reduce the total sur-
faces at fixed volumes. Otherwise, the shape evolution process
will be applicable for only one case, either a convex surface or
a concave surface, if the excess chemical potential is not iden-
tified as positive or negative individually. Therefore, Eq 1 can
be rewritten as

�� = � − �0 = ���K (Eq 1-1)

where the positive or negative value corresponds to a convex
(protruding) or a concave surface, respectively.

In a similar way, a rod, or a plate-shaped particle and a void,
which have three-dimensional sizes near to each other, is sus-
ceptible to direct spheroidization as a result of a curvature-
induced self-diffusion process. Both the particle and the void
evolve into a spherical shape with reduction in total surface
area, during which the morphology change is completed.

On the other hand, the known “Ostwald ripening” of pre-
cipitates and, similarly, either growth or shrinkage of spherical
voids with different radii controlled by lattice diffusion could
also be described based on the understanding mentioned above.
We start with the simplest system consisting of two spherical

Fig. 1 Cylinderization of an elliptical plate and an elliptical hole and
shrinkage of a spherical void
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precipitates (convex surfaces) of different radii, r1 and r2 (r1 <
r2). In this section, where �(r1) > �(r2) �, there will be a
diffusive flux of atoms of the precipitates from 1 to 2, which
results in the shrinkage of the small precipitate and the growth
of the larger, leaving only one somewhat larger precipitate in
the system. The same phenomenon also occurs in the sintering
of rows of spherical particles, where smaller particles disappear
and larger particles grow.[47] We next consider a system con-
sisting of two spherical voids (concave surfaces) of different
radii, r1 and r2 (r1 < r2). In this case, where �(r1) < �(r2), the
atoms will diffuse from the surface of void 2 to that of void 1,
which will lead to the reduction and enlargement in the sizes of
the smaller void and larger void, respectively. During the pro-
cesses, the total surface area is reduced by the growth of larger
particles or voids at the expense of the shrinkage of smaller
particles or voids, and their eventual disappearance, whereas
the total volume is invariant.

Note that the curvature-induced diffusion process and re-
sultant morphology change described are dominated by surface
self-diffusion when the total volume of the system remains
constant. The formation of the sphere is generally considered to
be a complete finish of the shape evolution because it has the
most stable morphology and the lowest system free energy
relative to any other shapes. However, a new diffusion process
of atoms will occur between the spherical void surface and the
adjacent grain boundary interface or other surface, where a
source of or a sink for vacancies or atoms is because of the
difference in chemical potential between them. Then the size of
the spherical void could vary by the new self-diffusion, while
the void retains its invariant spherical shape throughout the
change in its size. The process should be dominated by either
grain boundary diffusion for voids on the grain boundaries or
lattice diffusion for voids within grains, and faster surface dif-
fusion would keep the spherical void shape unchanged during
the process. As also indicated in Fig. 1, the total surface area of
the void and the free energy of the system will be reduced with
decreasing void volume.

Therefore, it is reasonable to present a model to describe the
shrinkage of a spherical void in the center of an equiaxial grain
dominated by lattice self-diffusion of atoms at high tempera-
ture, on the basis of the difference in chemical potential be-
tween atoms on the spherical void surface and equiaxial grain
boundary interface.

3. Model

As stated above, some separated spherical voids were left in
a polycrystalline solid, both on a grain boundary and within a
grain, as a result of the healing of an internal penny-shaped
microcrack in high-temperature annealing. Finger-like chan-
nels emerged from the morphological changes of the crack and
the formation of many small voids. On the other hand, anneal-
ing at high temperature can also cause grain growth, which will
isolate many spherical voids initially on grain boundaries
stranded inside the grains.[17,20,21] However, only shrinkage of
a spherical void within a grain will be treated in the present
paper.

A schematic model is depicted in Fig. 2. For a polycrystal-
line solid, an isolated spherical void of radius � is embedded in

the center of an equiaxial grain, approximately spherical grain
of radius R (or the distance from the center of the void to the
grain boundary interface), and r is the distance to the center of
the void. On the basis of the above approach, it is reasonable to
express the excess chemical potentials of the concave void
surface,[10,39-44] and particularly the convex grain boundary in-
terface, respectively, as follows

��� = − 2�s��� (Eq 2)

and

��R = 2�gb��R (Eq 3)

where �s and �gb are surface tension and grain boundary energy
of the polycrystalline solid, respectively.

The term on the right-hand side of Eq 3 arises from the
assumed convex grain boundary, which does not exist in mod-
eling of either the void shrinkage or the void growth on grain
boundary interface, where only a planar interface is involved.

Identical to those on a grain boundary interface and a sur-
face, the atom flux proportional to the gradient of an excess
chemical potential along the radial direction from the grain
boundary interface to the void surface is also expressed
by[40,41,49]

J = −�Dl�kT����� (Eq 4)

where Dl is the lattice self-diffusion coefficient (assumed to be
isotropic), k is the Boltzmann constant, and T is the absolute
temperature.

D is described as D0 exp(−Q/RT), where D0 is the frequency
factor, R is the gas constant, and Q is the activation energy for
self-diffusion. D for the surface and bulk (through the lattice)
self-diffusion are denoted by the subscripts s and l, respec-
tively.

Void shrinkage or growth occurs from the ability of the

Fig. 2 A model with a spherical void of a radius � embedded in the
center of a quasi-spherical grain of radius R; r is the distance to the
center of the void
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grain boundary to behave as a perfect and inexhaustible source
of or sink for either vacancies or atoms, depending on the
whether the grain boundary interface has either higher or lower
excess chemical potential than that of the spherical void sur-
face. In the steady state, when stress redistribution is com-
pleted, vacancy elimination or formation must occur at a con-
stant rate over the entire boundary area.[24,37] For lattice self-
diffusion, steady state is obtained by

div.J = � (Eq 5)

where � is the number of atoms removed per unit time and unit
volume of the grain boundary interface through the grain lattice
between the grain boundary interface and the void surface,
where there is no mass accumulation or production inside the
grain lattice and the source of atomic flux is purely the grain
boundary interface area.

Substituting Eq 4 in Eq 5, we obtain the differential equa-
tion

�2�� + ��kT��Dl� = 0 (Eq 6)

Assuming spherical symmetry in the variation of the excess
chemical potential with the radial direction between the void
surface and the grain boundary interface, the appropriate solu-
tion giving the distribution of chemical potential with the radial
coordinate r is

�� = −��kT��6Dl�r
2 + B + C�r (Eq 7)

or

�� = Ar2 + B + C�r (Eq 7-1)

where A, B, and C are constants to be determined.
Solving the differential equation for ��, subject to the

boundary conditions as given by Eq 2 and 3, and ���/�rr�R �
0, which determines either generating or vanishing atomic flux
at the grain boundary, respectively, for the shrinkage[24] or the
expansion[37] of the spherical void, we obtain �� at any loca-
tion in the grain with a radius of r(� 	 r 	 R) expressed by

�� =
�2�gb�R + 2�s����

�3R2 − �2 − 2R3���
�r2 − �2 + 2R3 �1

r
−

1

���
−

2�s�

�
+ P� (Eq 8)

The variation of excess chemical potential with distance
from the center of the void, r, is shown in Fig. 3. The excess
chemical potential decreases gradually from the grain bound-
ary, r � R, to the void surface, r � �, and the larger the ratio
of � to R, the lower the gradient. The atoms are driven by the
gradient of the excess chemical potential to diffuse from the
grain boundary interface into the void surface along the radial
direction, which would lead to the spherical void shrinking and
finally vanishing.

However, as expected, the gradient of the excess chemical
potential remains unchanged with an increase in hydrostatic
pressure, P, which elevates the excess chemical potential with

an identical magnitude on the grain lattices between the spheri-
cal grain boundary interface and the spherical void surface, as
indicated in Fig. 3. The result suggested that the spherical void
shrinkage in a grain was independent from the hydrostatic pres-
sure normally acting on the grain boundary interface. The
prediction is in good agreement with the experimental ob-
servations on the spherical void shrinkage in copper under
hydrostatic pressure.[17,20] The experimental examinations
showed that, for spherical voids on the grain boundaries, the
shrinkage process was accelerated by an increase in hydrostatic
pressure. However, for spherical voids situated within the
grains, no tendency to shrink was observed under the same
hydrostatic annealing conditions.

The plots also revealed that the gradient of the excess
chemical potential gradually vanishes as it moves away from
the spherical void surface, within the grain lattice of R 
 r 

(R − �)/2. On the other hand, the plots also indicated that the
excess chemical potential of the convex grain boundary as
assumed, approaches zero over the grain lattice close to the
grain boundary interface, compared with that of the spherical
void surface where �s�/� is much greater than �gb�/R. In other
words, the chemical potential of the convex grain boundary is
identical to that of the planar interface and independent from
both the curvature of the grain boundary interface and the
geometric singularities resulting from the multigrain junctions.
That is, the second term on the right-hand side of Eq 3 pre-
sented by the convex grain boundary, i.e., the almost zero
contribution of the grain boundary curvature to the excess
chemical potential, can be generally omitted.[24,37] Then one
has ��R � 0 in Eq 3, relative to �s�/� in the case without the
external hydrostatic pressure. The result implies that it is not
critical to assume either a spherical or planar grain boundary
interface for the spherical void shrinkage in the grain. The
planar grain boundary interfaces with multigrain junctions,
usually observed in crystals, can be reasonably treated in the
model. Furthermore, it should be pointed out that the physical
meaning of the radius of the grain, R, is actually the distance
from the center of the spherical void to the flat or curved grain
boundary interface surrounded.

Fig. 3 The radial distribution of chemical potential from void surface
to grain boundary interface
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The rate of the void shrinkage is determined by the gradient
of chemical potential evaluated at the void surface, and then the
diffusion flux is given by

J =
Dl

kT� ����

�r �
r=�

= −
2D�2�gb�R + 2�s���

kT�3R2 − �2 − 2R3���
�� −

R3

�2�
(Eq 9)

If the void retains its spherical shape by surface diffusion,
we have the rate of void shrinkage

d�

dt
= −

2Dl��2�gb�R + 2�s���

kT �3R2 − �2 − 2R3���
�� −

R3

�2� (Eq 10)

which is independent of external hydrostatic pressure. On in-
tegrating from �0 (initial radius of the void) to a0/2 (atomic
radius), assuming �0 >> a0 or a0/2R ≈ 0, and ignoring growth
of the grain, we obtain

t0�s� = −
kTR3

4Dl�s�
�

0

x bx3 �3x − x3 − 2�

�x + b��1 − x4�
dx (Eq 11)

where x � �0/R, and b � �s/�gb. However, no analytical
solution for t0(s) can be rationally given by the x integral of Eq
11. As another choice, numerical calculations indicate that Eq
11 can be exactly replaced with the relative errors below 1%
within the range of 0 	 �0/R 	 0.4 by

t0�s� = −
kTR3

4Dl�s�
�

0

x bx3 �3x − x3 − 2�

�x + b�
dx (Eq 11-1)

t0(s) is given by

t0�s� = −
kTR3b

4Dl�s�
��1 + b�2 �b2�b − 2���0

R � +
b

2
�2 − b���0

R �2

+
1

3
�b − 2���0

R �3� +
1

4
�3 − b2���0

R �4

+
b

5 ��0

R �5

−
1

6 ��0

R �6

+ b3 �2 + 3b − b3� ln�1 +
�0

bR�� (Eq 12)

The time, t0(s), to totally heal the void of initial radius �0/R,
is enhanced monotonically with an increase in �0/R, as dem-
onstrated in Fig. 4, which seems insensitive to the ratio of
surface tension to interface (grain boundary) energy, �s/�gb,
particularly for small �0/R. For an identical �0/R, the larger the
grain size, R, the shorter the total healing time, t0(s).

4. Predictions for Pure Iron

It is well known that the lattice-diffusion of metals is
strongly dependent on their crystal lattices, temperature, and
pressure. Pure iron is selected as the objective with body-
centered cubic (bcc) and face-centered cubic (fcc) lattices of
transformation temperature, � − Fe ↔ � − Fe, 1185 K, and
annealing temperatures of � − Fe, 973, 1073, and 1173 K; and

1200, 1300, and 1400 K for � − Fe. The total time, t0(h), to heal
a spherical void of radius �0 is predicted by Eq 12, using the
following parameters: Boltzmann constant k � 1.38 × 10−23

J � K and gas constant R = 8.31 J/mol · K, and others given in
Table 1.

In the present study, the shrinkage of the spherical voids
was investigated within a range of a grain radius R from 20 to
100 �m, which is usually present in pure iron.

4.1 Effects of Crystal Lattice and Temperature

Figure 5 gives the variation of the total healing time, t0(h),
with initial radius of spherical voids, �0, within a grain of
radius R � 20 to 100 �m at transformation temperature of
1185 K, for � − Fe and � − Fe, respectively, which increases
monotonically and linearly as �0 at the scale of some hundreds
of hours. However, the time to heal voids with identical �0 for
� − Fe and � − Fe depends highly on the crystal lattices.
Obviously the longer times, t0(h), are needed for � − Fe than
those for � − Fe at the same temperature of 1185 K because �
− Fe has lower lattice diffusion constants, and, in particular,
higher activation energy of self-diffusion.

As presented in Fig. 6, the times, t0(h), are remarkably
decreased initially and then continue to decrease gradually as
temperature increases from 1000 to 1185 K in � − Fe, and from
1185 to 1400 K in � − Fe, respectively, for a spherical void of

Table 1 Diffusion Parameters for Pure Iron

Parameters � − Fe � − Fe

�s � J/m2[48] 2.2 2.2
�gb � J/m2[48] 0.8 0.8
a0(m) × 10−10 2.48 2.58
Dos (m2/s)[35] 10 0.4
Dol (m2/s)[48] 1.9 × 10−4 1.8 × 10−5

Qs (KJ/mol)[35] 233.52 205.8
Q1 (KJ/mol)[48] 239 270

Fig. 4 The normalized time to heal a spherical void with an initial
radius of �0/R
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radius �0 � 1 �m, with grain radii of R � 20 and 100 �m. In
addition, the gaps in the times, t0(h), resulting from the two
values of R, are almost independent from increasing tempera-
ture. The spherical void shrinkage is accelerated with an in-
crease in temperature by an exponential increase of the diffu-
sion coefficient. For example, the times spent for � − Fe at
1200 and 1400 K only correspond to those for � − Fe at 1000
and 1100 K, respectively, for a spherical void of radius �0 �
1 �m within a grain of R � 100 �m. Fortunately, the times,
t0(h), could be much reduced by annealing at a temperature
higher than 1500 K for � − Fe. Certainly, the larger the grain
size, the less time will be needed, which will be discussed
below.

4.2 Dependencies on Grain Sizes

Figure 7 shows the linear dependencies of the times, t0(h),
on grain sizes for spherical voids, or the distance from the void
center, with various radii of �0 in � − Fe healed at a temperature
of 973 K. The healing time is approximately inversely propor-
tional to the grain sizes, t0  1/R; i.e., the increased grain sizes
lead to the shorter times to be expended for an identical �0. This
means that many more atoms were activated and gathered to
diffuse from an enlarged grain boundary interface around the
spherical void as the grain size increased, which raised the
local chemical potential (particularly its gradient near to the
void surface) and promoted the shrinkage of the void, as shown
in Fig. 4. In another words, many more lattice sites were avail-
able on the enlarged grain boundary interface for the precipi-
tation of vacancies diffused from the spherical void surface
with an increase in grain sizes.

4.3 Time to Heal a Spherical Void with Radius of �0

The times, t0(h), needed to heal a spherical void with a
radius of �0 are displayed in Fig. 8 and 9, and Table 2 for both
� − Fe and � − Fe in a large scale of grain sizes from 20 to 100
�m at temperatures selected, which exhibit linear relationships
with similar slopes of n � 4, i.e., t0(h)  �4

0, regardless of the
crystal lattices, grain sizes, and temperatures. The plots exhibit
similar grain size and temperature dependencies of the healing
times, t0(h), for spherical voids with various radii of �0, as
given above.

4.4 Comparison with Spherical Void Shrinkage on a
Grain Boundary

Figure 10 gives temperature dependencies of the time to
eliminate a spherical void with a radius of �0 � 1 �m within
grains of radii R � 20 and 100 �m, together with those of
half-void spacing of b � 2 and 10 �m on a grain boundary for
� − Fe.[50] The plots present stronger temperature dependencies

Fig. 5 The variations of healing time with the initial radii of spheri-
cal voids for � − Fe and � − Fe with different grain radii at the
transformation temperature

Fig. 6 The healing time as a function of temperature for a spherical
void with an initial radius of �0 � 1 �m in � − Fe with grain radii of
R = 20 and 100 �m

Fig. 7 The linear dependencies of healing time on grain sizes for
spherical voids with various initial radii in � − Fe at a temperature of
973 K
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for the former than those for the latter; the result is that the two
groups of curves have an overlapped zone at 900-1000 K and
gradually separate as the temperature increases. The gaps in the
times, t0(h), resulting from the two values of either R or b, are
almost independent from increasing temperature, respectively.

Generally, it seems that the times to heal voids with an
identical radius within grains are not longer than in those on
grain boundary interfaces at fixed annealing temperature for �
− Fe, which differs apparently from the results in copper.[17,20]

Of course, the mutual relation is highly dependent on the crys-
tal lattices with a different ratio of diffusion coefficients, tem-
perature, and the spherical void sizes (in particular, the void

spacing on the grain boundary and the grain sizes), and cannot
be confirmed simply.

Figure 11 illustrates the comparison of the shrinkage pro-
cess of a spherical void of an initial radius �0 � 1 �m relative
to annealing time within a grain radius of R � 100 �m with
that on a grain boundary of half-void spacing b = 2 �m[50] at
a temperature of 973 K, both of which reduce its size with the
annealing. It is interesting, however, that the shrinkage of
spherical voids undergoes different sequences, the plots of
which exhibit a remarkable decrease initially and then a gradual
decrease for the spherical void on a grain boundary and inverse
changes for the shrinkage process of an intragranular spherical
void with annealing time. That is, for a spherical void of same
radius within grains, the shrinkage rate is lower initially and
higher finally than that on grain boundaries with annealing time at
fixed temperature, whereas the total times for the voids to vanish
are comparable to each other. Similar reversing tendencies in
spherical void shrinking kinetics have been presented in the ex-
perimental observations of copper.[17,20] It was indicated that the
rate of density increase of the specimens was rapid initially, but
decreased with time for a spherical void that contained little gas
on the grain boundary, whereas only a little shrinkage was found
for the spherical voids within grains during initial annealing.

The difference is caused by the opposite dependency of the
gas-free void shrinkage process upon the void spacing on grain
boundaries to that on the grain radius within grains. The heal-
ing time is approximately proportional to the void spacing[50]

and inversely proportional to the grain size, as given above.
That is, as the void shrinks, the relative void spacing and grain
size to the void radius is enlarged, which either reduces or
enhances the gradient of the chemical potential close to the
void surface, and then either depresses or elevates finally the
related rate of the void shrinkage, respectively.

Hence, it cannot be simply concluded that the shrinkage rate
of the gas-free voids of identical radius within grains is posi-
tively lower than that on grain boundaries for � − Fe. The
situation is similar even in copper,[17,20] whereas the diffusivity
ratio of grain boundaries to lattices (Dgb/Dl) in iron is 10 times
that in copper at the temperature interval involved. For the
experimental observations in copper in which the rate of void
shrinkage on grain boundaries was higher than that within
grains,[17,20] the only appropriate explanation should be the
inverse dependency of the void shrinkage process upon the
half-void spacing on grain boundaries with that on the grain
radius within grains at the initial shrinkage of the voids. The
prediction also suggested[50] that the time to eliminate a spheri-
cal void with an identical radius within grains is close to that on
grain boundaries at a fixed temperature, and is related to
spherical void size, void spacing, and the grain size. Therefore,
equivalent attention should be devoted to the shrinkage process
of spherical voids within grains when that on grain boundaries
is evaluated.

Most important, the predictions suggest that it is possible to
wholly heal small micron-sized spherical voids in grains of
pure iron within hours by annealing at high temperature. More-
over, the calculations also clarify that the times to heal spheri-
cal voids within grains are comparable with those on a grain
boundary for pure iron at the temperature range selected. This
means that the high-temperature annealing for the spherical
void shrinkage can be carried out in practice wherever the void

Fig. 8 The healing time linearly related to initial radii of spherical
voids within grains of radii (a) R = 20 �m and (b) R � 100 �m in
� − Fe at temperatures of 973, 1073, and 1173 K

Fig. 9 The healing time linearly related to initial radii of spherical
voids within grains of radii (a) R = 20 �m and (b) R � 100 �m in
� − Fe at temperatures of 1200, 1300, and 1400 K

328—Volume 11(3) June 2002 Journal of Materials Engineering and Performance



is located (either within a grain or on a grain boundary). Ac-
tually, our corresponding experimental works in progress also
showed that only spherical voids with the radii of �0 � 0.5 ∼
1.0 can be observed both within grains and on grain boundaries
for pure iron after the morphology evolutions of internal
penny-shaped microcracks, which were fatigue induced, an-
nealed at the temperature of 1173 K.

In addition, calculations revealed that the times to heal
spherical voids were inversely proportional to the grain sizes,
at the center of which the voids existed. These results suggest
that the grain coarsening during the annealing at a high tem-
perature could accelerate the spherical void shrinkage. It
should also be noted that the hydrostatic pressure has no effect
on the shrinkage process of the spherical void within grains,
which greatly differs from the situation on grain boundaries.
On the other hand, it is usually difficult to observe the void
shrinkage process because of small size (<10 �m). The pre-
dictive modeling and theoretical analyses are thus beneficial in
understanding the spherical void shrinkage.

Consequently, the total time can be accurately predicted to
heal an internal penny-shaped microcrack, which was fatigue-
induced, in a polycrystalline solid, on the basis of the model
presented, and the proper relationship between the initial sizes
of the spherical voids and the geometrical dimensions of the
original internal microcrack, which evolved into the spherical
voids. Furthermore, the annealing techniques can be correctly
determined with appropriate parameters of temperatures and
times to heal the internal microcracks with various geometrical
dimensions, depending on the crystal lattices and grain sizes. In
practice, the healing techniques can be applied to eliminate the
internal microcracks in materials and to recover the properties
of the materials, assuming the geometric dimensions of internal
microcracks are available from equations for the crack growth.

5. Conclusions

A model is presented to describe a spherical void shrinkage
within the center of a quasi-spherical grain dominated by the

Table 2 Total Time to Fully Heal Spherical Voids with a Radius of �0

t0 (h) � − Fe � − Fe

�0 (µm) R (µm) 973 K 1073 K 1173 K 1200 K 1300 K 1400 K

0.5 100 0.33 0.03 0.34 0.05
20 1.52 0.11 1.62 0.22 0.04

1.0 100 4.88 0.35 0.04 5.50 0.75 0.13
20 23.2 1.65 0.18 25.8 3.64 0.63

1.5 100 24.1 1.80 0.20 26.7 3.61 0.62
20 117 8.36 0.93 125 17.0 2.92

2.0 100 80.6 5.80 0.64 12.1 2.16
20 27.4 2.80 49.2 8.48

2.5 100 13.0 1.50 27.6 5.35
20 55.5 6.15 20.6

3.0 100 28.1 3.12 10.2
20 13.2 45.1

Fig. 10 Differences in the healing time as a function of temperature
for a spherical void with an initial radius of �0 � 1 �m between those
within grain radii of R � 20 and 100 �m and with half-void spacing
of b � 2 and 10 �m, on the grain boundary, respectively, in � − Fe

Fig. 11 Change in radius of a shrinking spherical void within a grain
compared with that on a grain boundary interface as function of the
annealing time for � − Fe
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lattice self-diffusion based on the difference and the spherical
symmetry distribution assumed in chemical potential between
the spherical void surface and the grain boundary interface of
the quasi-spherical grain. The quantitative predictions for a
spherical void shrinkage within the center of a quasi-spherical
grain in pure iron were completed. The main results obtained
are summarized as follows:

• Only small micron-sized spherical voids could be totally
healed within hours by annealing at an acceptable high
temperature. The time to heal the spherical voids with
identical �0 highly depends on crystal lattice, temperature,
and grain size, especially the initial radius of the void.

• The time to eliminate a spherical void with an identical
radius within grains is close to that on grain boundaries at
a fixed temperature, and is related to void size, void spac-
ing, and the grain size.

• The times, t0(h), to heal a spherical void with an initial
radius of �0 are positively and linearly related to the values
of �0 with similar slopes of n � 4, i.e., t0(h)  �0

4, regard-
less of crystal lattices, grain sizes, and temperatures se-
lected.

• The shrinkage of a spherical void is promoted by increas-
ing the temperature, which elevates the diffusion coeffi-
cient. The shrinkage process of the spherical void in grains
is also independent of an external hydrostatic pressure,
which is different from the situation of the spherical void
on a grain boundary interface.

• The healing time is approximately inversely proportional
to the size of a grain surrounded by a spherical void with
a radius of �0, namely, t0  1/R.
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